Introduction of the Soft X-ray Imager (SXI) on board the Astro-H satellite

H. Matsumoto (Kyoto Univ.)
on behalf of the SXI team
The SXI team

• **PI: H. Tsunemi (Osaka Univ.)**
 - *Osaka Univ.*: K. Hayashida, N. Anabuki, H. Nakajima
 - *Kyoto Univ.*: T. Tsuru, H. Matsumoto
 - *ISAS/JAXA*: T. Dotani, M. Ozaki, A. Bamba
 - *Kogakuin Univ.*: T. Kohmura
 - *Rikkyo Univ.*: H. Murakami
 - *RIKEN*: J. Hiraga
 - *Miyazaki Univ.*: K. Mori, M. Yamauchi
 - *Noqsi*: J. P. Doty
 - *MIT*: M. W. Bautz
Soft X-ray Imager (SXI)

- Requirements
 - Imaging capability for compensating the calorimeter (Soft X-ray Spectrometer; SXS)
 - Bridging the dynamic ranges of the SXS (0.3—10 keV) and of the Hard X-ray Imager (HXI; 5—80 keV)

 - Wide dynamic range: 0.2 – 20 keV
 - Low background: similar to the Suzaku X-ray CCD (XIS)
From XIS (Suzaku) to SXI (ASTRO-H)

XIS
- 4 cameras
 - 1 chip/camera
 - FOV 18 arcmin
- MIT/Lincoln chip
- Nch CCD
- FI and BI
- Temp -90°C
 - Peltier Cooler
- Optical Blocking Filter

SXI
- 1 camera
 - 4 chips/camera
 - FOV 38 arcmin
- HPK chip
- Pch CCD
- BI
- Temp -120°C
 - Stirling Cooler
- Optical Blocking Layer
X-ray CCD chip of SXI

Spec (manufacturer: Hamamatsu Photonics)
- Pch back-illuminated CCD (carrier = hole)
 - Depletion layer is > 200 μm
- 4 chip mosaic
 - 1 chip Pixel: 24 μm, 1280x1280, 30.72mm
 - FOV 38arcmin (Focal Length ~ 5.6m)
- Optical Blocking layer (Al - PI – Al) on the chip
- Chip gap (dead area): >0.6mm We need off-set the bore-sight by 5x5mm.
- SCI technique (Charge injection) is employed.
CCD current status

Spectrum of 55Fe
FWHM 135+/- 4 eV @ 6 keV
Noise 5.6 +/- 0.1 e-
Overall view of the SXI camera
Optical Blocking Layer (OBL)

- Specification
 - Optical/UV light is blocked
 - Eliminate the thin plastic film (OB Filter) to avoid the vacuum system.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 400 Å</td>
<td></td>
</tr>
<tr>
<td>Polyimide 1000~2000 Å</td>
<td></td>
</tr>
<tr>
<td>Al 1000 Å</td>
<td></td>
</tr>
<tr>
<td>CCD</td>
<td></td>
</tr>
</tbody>
</table>

OBL
Efficiency and Effective Area

SXI (with OBL)

SXI + XRT
SXI System

SXI-A
- CCD
 - Drive clock
 - CCD Driver (DAC + Analog SW)
- Video ASIC
 - ΔΣ modulator & decimation filter

SXI-S
- Heater
- Temp monitor
- CCD

SXI-FrontEnd
- HeaterPow
- HK ADC

SXI-E
- Sequencer FPGA
 - Frame data
 - Dark level process
 - Event extraction
- DE/IF FPGA
- SpW FPGA
 - Command
 - Frame data event candidates

SXI-DE
- CPU
- SOI SOC
- SpW FPGA

Space Card
- Universal SpW Module x2

SXI PSU

Hardwares of DE I/F board and sequencer board are identical.
Calibration plan

• Screening process will begin this fall.
 – Optimize parameters such as voltage etc.
 – OBL, noise, bad pixels etc..

• Calibrations of flight sensors will begin in spring, 2012.
 – At Osaka Univ. (soft-energy band) and Kyoto Univ. (hard-energy band)
 – QE, energy resolution
 • How to calibrate QE of BI sensor with OBL?