
宇宙は極限の実験室
我々が宇宙に目を向ける時,見た目の静寂さとは裏腹な,その極端な姿に大変驚かされます.例えば,1億度以上の高温,光さえも逃げられない極限重力,地球の10兆倍もの強磁場など,地上では実現不可能な極限物理状態が,宇宙には満ち溢れています.人類が地上で実現できる物理状態は限られており,そこで確立された物理法則は,より極限の物理状態でも成立するのか?我々がまだ知らないだけで,興味深い貴重な物理現象がまだ沢山隠されているのではないか?宇宙とは,この問いを検証するための「極限の実験室」でもあります.
X線や重力波で宇宙を見ると
古来より,人類は宇宙の知識を,可視光の狭い波長域での観測に頼って来ました.1960年代,ロケット,人工衛星が利用可能になってからようやく,大気の吸収を乗り越えて,X線による宇宙の観測が始まりました.可視光の1 /1000と言う短い波長,すなわち1000倍のエネルギーの光であるX線は,地上であれば,数万ボルトの電圧で電子を加速してターゲットにぶつけることで発生させます.宇宙では,一億度に達する超高温なガスの中の熱的に高エネルギー電子や,大きなプラズマ運動の中で磁場や電場で加速された電子から,X線が生じます.X線で宇宙を見ると,こうした超高温,高エネルギー現象を見出すことになるのです.近年では,ニュートリノや,重力波の直接検出など,新たな観測の窓が切り開かれました.特に重力波は宇宙の果てから届く高い透過力を持ち,将来には初源宇宙の情報をそのまま持つ「原始重力波」の検出も期待されます.可視光だけでは見えない宇宙の真の姿に,我々は迫ります.
学生諸君へ
Uxgグループは、X線観測・装置開発および重力波検出実験も行っています。
(1)銀河団やブラックホール、恒星フレアなど、宇宙の高エネルギー天体現象をX線を用いて研究している。高温ガスの大規模な運動や重元素の誕生・拡散、衝撃波やそこでの粒子加速を研究しています。現用のX線観測衛星のデータ解析に加え、次世代のX線分光、偏光、硬X線観測などを目指した先進X線望遠鏡やそれを支える技術を中心に、衛星搭載の装置開発を推進しており、 XRISM衛星やIXPE衛星からの最新データも日々得られています。また宇宙と地上から、 雷雲からのガンマ線観測により、自然界の静電場加速器の研究も進めています。X線・ガンマ線の観測研究の詳細は中澤准教授の研究ページと、三石講師の研究ページへ。
(2)宇宙誕生直後(10^-35秒頃)に起こったと考えられているインフレーションの時代に生成された重力波を検出し、宇宙がどのように誕生したかを解明することに挑戦しています。また現在の重力波検出器が観測しているブラックホール連星や中性子星連星の合体現象からより多くの情報を得る研究や、光の精密測定技術を応用した基礎物理測定も始めようとしています。重力波関連研究の詳細は苔山准教授の研究ページへ。